24artstroy.ru

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Резка чугуна кислородом

Резка чугуна кислородом

Методы резки чугуна можно разделить на механические и термические, есть также специальный инструмент под те или иные задачи. Далее рассмотрим методы и различные кейсы.

Резка чугуна болгаркой

Наиболее простой и доступный метод. Минусы: резка идёт только по прямой. Скажем срезать трубу & можно, а вырезать какую-то деталь, будет очень затруднительно, впрочем, в быту этот метод применяется в основном для монтажа сантехнического и отопительного оборудования. Стоит отметить, что это пожароопасный метод. Требуется дополнительная защита для лица и глаз.

При резке чугуна болгаркой стоит обратить особое внимание на отрезные круги. Сейчас весьма популярны отрезные диски на бакелитовой связке, они более прочны и упруги, чем расходники на керамической связке.

Резка чугунных труб труборезами

Для резки чугунных труб, существуют специализированные труборезы. К примеру Exact Pipecut & переносные электрические труборезы, для работы с трубами диаметром Ø 15 & 360

Трубы, изготовленные из стали, меди, чугуна, нержавеющей стали и пластмассы, могут быть разрезаны с помощью труборезов EXACT Pipecut 170, 200 и 360. Применение на труборезах твердосплавного диска ТСТ, дает огромное преимущество перед традиционными абразивными кругами скорость резки выше в четыре раза, отсутствие искр при резке, резка без добавления СОЖ в зону резанья. Для резки труб из чугуна применяют твердосплавные диски с алмазным напылением.

Газовая резка

Газокислородная резка . эффективна, но ограничена толщиной металла. Если нужно улучшить качество реза, то стоит посмотреть в сторону резки чугуна кислородно-флюсовым способом.

Для справки: чугун – сплав железа, который содержит в себе не мене 2,15% углерода.

Пример резки чугуна сверхзвуковым резаком Терминатор 220:

Вполне подходит даже для работы под водой .

Хорошо зарекомендовали себя мобильные установки Терморезак. Например, наиболее простая модель 2М , режет чугун на 150 мм. Информация от разработчика:

Назначение: ручная резка высокоуглеродистых и высоколегированных сталей, чугуна, цветных металлов и их сплавов, бетона и железобетона, композитных и других материалов. Принцип резки основан на разрушительном воздействии на материал высокотемпературной сверхзвуковой струи продуктов сгорания жидкого углеводородного горючего в кислороде. Области применения: утилизация объектов и металлоконструкций, аварийно-спасательные работы, ликвидация последствий чрезвычайных ситуаций, металлургическое производство, строительство, транспорт и т.п.

Кислородно-копьевая резка. Кислородное копье это стальная трубка, через которую пропускается кислород. Рабочий конец кислородного копья нагревают до 1350°С , далее поджают кислород, который воспламеняясь на конце копья достигает температуры 2000°С. Чтобы увеличить мощность копья внутрь трубки помещают стальной прут.

Резка чугуна плазмой & наиболее производительный вариант, однако он и наиболее дорогой.

Сверление чугунной трубы

При сверлении серого чугуна, как правило, нет необходимости применять охлаждающие и смазочные жидкости.

Что значит просверлить? Под сверлением понимают процесс создания отверстий в сплошном металле с помощью режущего инструмента — сверла. А теперь о том, как просверлить чугунную трубу.

Многие сталкиваются с данной проблемой и не знают, как ее решить. Серый чугун, как правило, можно просверлить легко, и он не требует использования охлаждающей и смазочной жидкости.

Но трубы бывают разные, и, в некоторых случаях, требуется применить больше усилия. Для этого следует выбрать сверло по металлу, имеющее угол приблизительно 116-118 градусов, а когда нет специальных инструментов, то надо просверлить с помощью сверла самого маленького размера, затем использовать сверла с диаметром побольше, постепенно увеличивая его.

  1. При горении сверла можно смазать его водой. Для того чтобы просверлить чугун, подойдет и ручная дрель, обороты которой плавно увеличиваются.Непосредственно при сверлении обороты должны быть маленькими, как и давление на дрель.
  2. В бытовых условиях рекомендуется применять сверла с победитовыми насадками, такие сверла нужно использовать на маленьких оборотах, соблюдать вертикальность усилия и часто охлаждать режущую насадку, перегрева и почернения ее допускать нельзя;
  3. В промышленных условиях при необходимости просверлить чугунную трубу обычно используют станки с рабочим инструментом, которые имеют рабочие поверхности с соответствующими заточками.
Читать еще:  Резка металла электросваркой

Несомненно, они оснащены подачей охлаждающих жидкостей, которые обеспечивают заданную рабочую температуру. Помимо вопроса, чем просверлить чугун, нужно подумать над вопросом безопасности этих работ. В массиве обрабатываемого материала возможно наличие пустот и других дефектов.

Зачастую это связано с количеством углерода в чугуне и других компонентов. Эти дефекты приводят к выделению большого количества пыли и мелкодисперсной крошки. В связи с этим существуют общие правила техники безопасности:

  • оборудование места работы вентилируемой вытяжкой;
  • использование респиратора или ватно-марлевой повязки;
  • использование защитных очков с закрытыми боковыми краями;
  • работа в спецодежде, рукавицах и головном уборе.

Также важно запомнить: перед тем как просверлить трубу, необходимо убедиться, что в ней отсутствует давление и жидкость, которую она транспортирует!

Разновидности и требования к технологии

Помимо механических способов резки различают два метода газовой обработки чугунных изделий, среди которых:

  • кислородно-копьевая технология;
  • газокислородный способ.

В качестве инструмента для разделения и обработки чугуна используется газовый резак.

Процесс газовой термической резки чугуна основан на интенсивном термическом воздействии, вследствие которого происходит окисление материала в струе кислородной среды. Для выполнения технологической операции необходимо соблюдать рад основополагающих требований, среди которых:

  • температура нагрева рабочего участка должна быть меньше порога плавления разрезаемого материала;
  • окислы, образующиеся в ходе экзотермической реакции должны иметь более низкую температуру плавления, чем порог воспламенения металла.

В том случае, когда не выполняется первое из указанных требований, материал станет плавиться раньше, чем можно будет начать процесс резки. При несоответствии второго пункта процесс резки не сможет достичь цели, из-за затруднений, связанных с удалением образовавшихся окислов, не перешедших в жидкое состояние. Характеристики чугуна определяются его химическим составом и маркой сплава.

При использовании технологической операции копьевой резки используется специальное оборудование, в котором стальная трубка выполняет функции кислородного копья. Через наконечник пропускается расходный материал в виде кислорода, нагревая край до значения температуры1350 Сº. После поджига и воспламенения температура возрастает до 2000 Сº. Как следствие, благодаря термическому воздействию, горящая смесь довольно легко справляется с задачей резки чугунного сплава. Чтобы термическое воздействие не вызвало деформацию копья, трубка усиливается с помощью стального прута.

Обе технологии термической работы по разделению чугуна являются актуальными и востребованными. При этом методики требуют высокой квалификации от исполнителя, который должен иметь опыт работы не только с газовым оборудованием, но и практику работы по резке чугунных изделий. Помимо этого процесс сопровождается вредными факторами. В ходе выполнения операции выделяется вредный для здоровья человека газ. В связи с эти выполнение работ производится на открытом воздухе, либо в помещениях с эффективно работающей принудительной вентиляцией.

  • Создание изделий от 1 часа
  • Отсрочка платежа постоянным клиентам
  • Возможна оплата по факту отгрузки
  • Качество продукции соответствует ГОСТам, ТУ и подтверждено сертификатами

Подготовка к работе

Еще до начала резки газом необходимо обследовать прибор, удостовериться, что пропановый резак находится в рабочем состоянии. Далее нужно выполнить следующие операции:

  • Подготовка аппарата для резки начинается с подключения к нему шлангов. Ещё до присоединения рукава его продувают газом — это позволит убрать из него мусор и грязь.
  • Кислородный шланг необходимо подсоединить к штуцеру с правой резьбой, для этой цели используют ниппель и гайку. Что же касается шланга, через который будет поступать пропан, то его крепят к штуцеру с левой резьбой. Обязательно нужно еще до подключения рукава с газом выяснить, присутствует ли подсос в каналах резака. Эту задачу можно решить путем подключения кислородного шланга к штуцеру кислорода, при этом нужно убедиться, газовый штуцер останется свободным.
  • Далее потребуется выставить уровень подачи кислорода на 5 атмосфер, после чего нужно открыть вентили, регулирующие поступление газа и кислорода. Прикоснитесь пальцем к свободному штуцеру — так вы узнаете о наличии подсоса воздуха. В случае его отсутствия придется прочистить инжектор и продуть каналы резака.
  • После этого нужно убедиться, являются ли герметичными разъемные соединения. Если удастся выявить утечку, ее устраняют путем подтягивания гаек или замены уплотнителей. Также следует удостовериться в том, достаточно ли герметичны крепления газовых редукторов, в рабочем ли состоянии находятся манометры.
Читать еще:  Станок для резки оцинковки

Электрическая ножовка

Пользователю намного удобнее работать электроножовкой, нежели болгаркой, хотя принцип действия мало чем отличен. Легкое устройство с меньшими, чем у УШМ, габаритами, полотно расходуется медленнее диска, если верно подобрано (маркировка HSS или BIM, а также учтена длина).

Меньшая травмоопасность, скорость процесса — что-то среднее между болгаркой и ручной ножовкой, дешевизна расходных элементов и их доступность — преимущества резки чугуна электроножовкой.

Технические характеристики

Наименование параметраЗначение
Ёмкость флюсопитателя (по железному порошку), кг40
Давление кислорода, МПа (кгс/см2)
— при резке копьём0,5-0,8 (5-8)
— при прожигании отверстий0,8-1,0 (8-10)
Давление флюсонесущего газа, МПа (кгс/см2)0,08-0,15 (0,8-1,5)
Максимальный расход кислорода, м3/ч
— при резке или прожигании отверстий копьём диаметром: 1/4″60-90
— при резке или прожигании отверстий копьём диаметром: 3/8″80-120
Расход флюсонесущего газа (азота или сухого воздуха), м3/ч1,5-3,0
Диапазон расхода флюса, кг/ч
— при резке металлов толщиной до 300 ммдо 36
— при резке железобетона18-42
Максимальная толщина металлов и неметаллических материалов, разрезаемых с помощью копья, мм1500
Максимальная глубина прожигаемых отверстий в вертикальной стенке, мм1500
Масса копьедержателя, кг3,5

Рекомендации по применению

Непосредственно перед резкой металла конец копья подвергается предварительному нагреву, как правило, посторонними источниками – газокислородным резаком или горелкой – до температуры в пределах 1400 °C. После разогрева в него непрерывно подается кислород совместно с порошкообразным флюсом.

Мощность пламени для подогрева кислородного копья сравнительно с газовой резкой металла должна быть увеличена примерно на 15-25 %, поскольку часть тепла расходуется на нагрев флюса. Торец мундштука необходимо располагать на расстоянии в 15-25 мм от поверхности обрабатываемого материала. В противном случае велика вероятность хлопков и обратных ударов пламени, которые происходят за счет попадания отскочивших частиц флюса в сопло резака.

Флюс представляет собой мелкодисперсную смесь, состав которой зависит от разрезаемого материала. На выходе из кислородного копья порошок воспламеняется, за счет чего образуется факел. Его протяженность может составлять 50 мм, а температура – около 4000 °C. При сгорании флюс расплавляет возникающие тугоплавкие оксиды и переводит их в жидкотекучие шлаки, которые легко удаляются струей кислорода с места реза.

Сущность кислородно-флюсовой резки металла

Традиционная резка подходит далеко не для всех материалов. Например, сталь, легированная хромом с никелем, плохо поддается резке. Аналогичная проблема возникает и при нарезании цветных металлов и чугунов.

Тогда на выручку приходит кислородно-флюсовая технология. Сущность ее заключается в следующем. В зону резания подается порошок флюса. Это вещество в процессе резания воспламеняется и сгорает, выделяя при этом большое количество тепла, что делает возможным оплавление тугоплавких карбидов, боридов и оксидов металлов.

Сверление и резка металлов кислородным копьем

После поджига и стабилизации пламени торец трубы прижимают к поверхности детали. Углубление в материал происходит за счет тепла, которое выделяется вследствие сгорания металла. Во время температурного воздействия необходимо периодически совершать трубой обратно-поступательные и вращательные действия для удаления образовавшегося шлака. В итоге получается отверстие круглой формы, размер которого обычно на 1-2 см больше диаметра трубки-копья.

В этом видео показан процесс сверления кислородным копьем:

Помимо сверления, подобная технология позволяет осуществлять раскрой детали. Для этих целей дополнительно применяется газовый резак, который предварительно делает канавку размером около 15 см, куда вводится копье. С помощью такого метода можно разрезать стальные болванки толщиной 2 м:

Читать еще:  Резка плитки без плиткореза

Резка крупных металлических деталей кислородным копьем

Во время рабочего процесса трубка-копье постоянно укорачивается, поэтому нуждается в периодической замене. Длина сгоревшей части в первую очередь зависит от характеристик обрабатываемого материала. К примеру, при прожигании чугуна на каждый метр углубления требуется около 20 м трубы (при этом расход O2 составляет 35 м³ на 1 м). Поэтому обработка чугунных изделий таким методом имеет невысокую производительность.

Принцип работы машины кислородно-флюсовой резки

По внешнему виду такое оборудование напоминает тележку с установленным резаком и флюсопитателем. Обычно такие установки перемещаются по рельсовым путям и выполняют прямолинейный рез. Также существует возможность выполнять резку как под прямым углом, так и под углом 45°.

Флюсопитатель представляет собой бункер с флюсом. Из бункера флюс попадает в инжектор резака, а из него непосредственно в зону резки.

Кроме передвижных установок существуют ручные резаки. Внешне они схожи с обычными газокислородными резаками, но имеют дополнительный рукав для подачи флюса. Ручные резаки для удобства перемещения снабжаются двухколёсной тележкой, которая позволяет стабильно держать расстояние между соплом и металлом.

Резка высокохромистых сталей

Стали с содержанием хрома свыше 5% практически не поддаются резке газкислородным способом. Это происходит из-за образования на поверхности металла тугоплавкого оксида хрома. Для таких сталей применяют именно такой способ разрезания металла.

Перед началом резки рекомендуется выполнить отпуск стали при температуре около 300°С.

Кислородно-флюсовая резка происходит точно также как и газокислородная. Сначала разогревается лист в точке начала реза, а затем пускается струя с флюсом.

Рекомендуемое расстояние от сопла до металла – 16-20мм. Расстояние между изделием и соплом может быть увеличено, в зависимости от давления кислорода. Слишком малое расстояние перегревает мундштук и может привести к нестабильному горению пламени.

Скорость работы таким способом немного ниже, чем газовой резкой. Резку рекомендуется выполнять обратным способом, удерживая наклон резака в пределах 10°.

Для стабильного расплавления не только металла, но и флюса, необходимо увеличить мощность пламени на 20%, по сравнению с обычным способом резки. Пламя при этом должно быть нормальным.

Толщина металла, мм Скорость резки, мм/мин Расход кислорода, м 3 на 1 пог. метр Расход ацетилена, м 3 на 1 пог. метр Расход флюса, кг на 1 пог. метр
10250-3200,14-0,250,03-0,040,3-0,4
20220-2800,2-0,350,04-0,0450,4-0,6
50170-2100,4-0,70,05-0,0650,8-1,6
100100-1601,0-1,80,1-0,142,2-3,5
20050-805,0-8,00,2-0,35,5-9,0

Резка чугуна

Разрезать чугун обычной газовой резкой не получится. Основная причина – образование на поверхности окислов кремния.

Технология резки чугуна такая, как и высокохромистых сталей. Скорость таких работ следует снизить в два раза, а расход флюса при этом увеличится до 3-х раз. Рекомендуемое расстояние от сопла до изделия – 30-50мм.

В процессе работы возможно растрескивание чугуна. Для предотвращения этого, необходимо предварительно подогреть деталь, а после разрезания дать ей медленно остыть.

Толщина металла, мм Скорость резки, мм/мин Расход кислорода, м 3 на 1 пог. метр Расход ацетилена, м 3 на 1 пог. метр Расход флюса, кг на 1 пог. метр
2070-1201,0-2,00,1-0,152,0-3,0
5050-1002,0-4,50,15-0,23,2-5,0
10040-505,0-7,50,25-0,45,0-10,0
20020-4013,0-21,00,5-0,811,0-18,0
30010-2525,0-40,01,0-1,315,0-20,0

Резка меди

До изобретения кислородно-флюсовой резки, медь не резали газовым способом. Причин здесь несколько: высокая теплопроводность меди и высокая температура плавления окислов.

Технология резка меди такая, как у высокохромистых сталей, так и у чугуна. Перед резкой необходимо подогреть изделие до температуры 250-500°. Рекомендуемое расстояние от сопла до изделия – 10-40мм, и выбирается в зависимости от толщины металла.

Рез получается относительно качественный при машинном способе.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector