24artstroy.ru

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Пайка труб под азотом

Пайка труб под азотом

#1 COOL_FAN

  • Пользователи
  • 8 сообщений
    • Наверх

    #2 iwan

  • Пользователи
  • 25 сообщений
    • Наверх

    #3 Sentinel

  • Пользователи
  • 20 сообщений
    • из: Краснодар

    Плакала береза, хохотал крыжовник,
    Подрались за вишню клубника и шиповник,
    Матюкался тополь, пела песни слива.
    Вот такая штука — кальян и много пива.

    • Наверх

    #4 Александр

  • СKН
  • 397 сообщений
    • Наверх

    #5 Joy

  • СKН
  • 1 143 сообщений
    • из: Москва
    • Наверх

    #6 COOL_FAN

  • Пользователи
  • 8 сообщений
  • Насколько я понимаю баллон под давлением должен транспортироваться следующим образом:
    1. После работы откручивается редуктор
    2. Накручивается на горловину баллона колпак
    3. Перевозится.

    А иначе вес баллона катающегося по кузову сомнет любые манометры и редукторы.

    • Наверх

    #7 Joy

  • СKН
  • 1 143 сообщений
    • из: Москва

    Насколько я понимаю баллон под давлением должен транспортироваться следующим образом:
    1. После работы откручивается редуктор
    2. Накручивается на горловину баллона колпак
    3. Перевозится.

    А иначе вес баллона катающегося по кузову сомнет любые манометры и редукторы.

    Медно-фосфорные и серебрянные припои

    Медно-фосфорные припои

    Трехкомпонентные медно-фосфорные припои с содержанием серебра до 15 % предназначены для высокотемпературной пайки в холодильной промышленности.

    Особенности. Медно-фосфорные припои имеют сравнительно небольшую температуру плавления, обладают хорошей текучестью при пайке меди и некоторых ее сплавов. Из-за присутствия в составе припоя фосфора не требуется применения флюса. Паяные швы отличаются значительной прочностью и удовлетворительной коррозионной стойкостью.

    Припои этого класса широко используются при монтаже холодильного оборудования для соединений, испытывающих незначительные вибрационные и ударные нагрузки, причем с увеличением содержания серебра пластичность увеличивается. При пайке элементов арматуры с нетермостойкими элементами ( ТРВ , вентили, смотровые стекла) требуется охлаждение последних для предотвращения недопустимого перегрева.

    В процессе пайки для защиты от образования окалины рекомендуется продувка сухим азотом. Медно-фосфорные припои не применяются для пайки сталей из-за образования хрупкой пленки фосфитов по границе шва, что может привести к нарушению герметичности соединения.


    Таблица 2. Основные характеристики медно-фосфорных припоев

    Припой 102. Трехкомпонентный медно-фосфорный припой с содержанием серебра 2 %.

    Экономичен, имеет среднее растекание. Рекомендуется использовать при монтаже холодильных систем для пайки меди и ее сплавов в соединениях, не испытывающих больших вибрационных и ударных нагрузок.

    Припой 105. Трехкомпонентный медно-фосфорный припой с содержанием серебра 5 %.

    Пластичен, обладает медленным растеканием, поэтому способен заполнять большие зазоры. Паяный шов выдерживает небольшие вибрационные и ударные нагрузки. Рекомендуется для пайки меди и ее сплавов в изделиях холодильной техники.

    Припой 115. Трехкомпонентный медно-фосфорный припой с содержанием серебра 15 %. Наиболее пластичен из-за высокого содержания серебра и пониженного содержания фосфора. Рекомендуется для пайки соединений меди и ее сплавов. Паяный шов выдерживает умеренные вибрационные и ударные нагрузки при термических циклах. Наиболее распространен при пайке холодильных установок.

    Серебряные припои

    Четырехкомпонентные припои с содержанием серебра до 55 % предназначены для высокотемпературной пайки в холодильной и пищевой промышленности.

    Особенности. Серебряные припои имеют низкую температуру плавления и хорошо смачивают соединяемые поверхности. Они прекрасно заполняют зазоры соединений и дают прочные вакуумно-плотные швы, обладающие высокой прочностью и пластичностью, способные выдерживать значительные вибрационные и ударные нагрузки в большом диапазоне рабочих температур.

    Припои этого класса широко применяются при изготовлении и монтаже холодильного оборудования, особенно при пайке соединений, испытывающих значительные вибрационные нагрузки (например, припайке трубопроводов к компрессору).

    Более низкая температура растекания по сравнению с медно-фосфорными припоями делает их предпочтительными для пайки арматуры ( ТРВ , смотровых стекол, вентилей). Кроме того, снижается вероятность образования окалины. Используются с флюсом » Superflux » или аналогичным флюсом.

    В изделиях пищевой промышленности разрешается применять только безкадмиевые припои.


    Таблица 3. Основные характеристики серебряных припоев

    Припой 1530. Четырехкомпонентный припой с содержанием серебра 30 %.

    Экономичен. Имеет среднее растекание. Хорошо заполняет большие зазоры без перегрева соединения. Припой применяется во всех изделиях за исключением изделий пищевой промышленности из-за содержащегося в нем кадмия.

    Внимание! Пайку производить в хорошо проветриваемом помещении с соблюдением всех мер предосторожности.

    Припой 530 Sn. Четырехкомпонентный припой с содержанием серебра 30 %.

    Имеет более высокую температуру плавления, чем припой 1530 и обладает при этом средним растеканием. Хорошо формирует паяный шов в любом пространственном положении.

    Припой 538 Sn. Четырехкомпонентный припой с содержанием серебра 38 %.

    Обладает быстрым растеканием, что позволяет получать вакуумноплотные швы при значительных монтажных зазорах.

    Припой 540 Sn. Четырехкомпонентный припой с содержанием серебра 40 %.

    Имеет большой интервал плавления и обладает хорошим растеканием. Рекомендуется для пайки меди, стали в любых сочетаниях для соединений, испытывающих значительные вибрационные и ударные нагрузки.

    Припой 545 Sn. Четырехкомпонентный припой с содержанием серебра 45 %.

    Обладает очень быстрым растеканием и имеет низкую температуру плавления, поэтому рекомендуется для пайки элементов автоматики, боящихся перегрева ( ТРВ , соленоиды, вентили).

    Припой 555 Sn. Четырехкомпонентный припой с содержанием серебра 55 %.

    Ему свойственна самая высокая текучесть. Паяные швы обладают максимальной прочностью, коррозионной стойкостью, а также высокой пластичностью и способны выдерживать значительные вибрационные нагрузки в большом диапазоне температур. Рекомендуется для пайки арматуры, содержащей нетермостойкие элементы.

    Для пайки применяются нагреватели (горелки), работающие на смеси газов: пропан–бутан–воздух, пропан–бутан–кислород, ацетилен–воздух, ацетилен–кислород (рис.2).


    Рис. 2. Нагреватели для пайки труб: а — пропан–воздух; б — пропан–кислород; в — электрический

    Используются также резистивные электрические нагреватели.

    Правильный подбор нагревателя и правильная установка пламени позволяют избежать перегрева материала. Пламя горелки должно быть гладким, с четким голубым свечением ядра. В первой фазе нагрева расстояние между наконечником горелки и нагреваемой поверхностью должно быть равно длине конуса пламени. Горелку держат в таком положении до достижения температуры трубы около 650 °С (красный цвет). Затем увеличивают расстояние от наконечника горелки до места пайки примерно в два раза.

    Для уменьшения потерь тепла, особенно при использовании пропановой горелки, применяют отражатели (рис. 3, б).


    Рис. 3. Разогрев трубы перед пайкой: а — пропан-кислородная горелка; б — пропановая горелка

    При пайке необходимо создать внутри трубы среду нейтрального газа, что исключит образование окалины внутри трубы. При работе холодильной машины окись меди, флюс, остатки припоя могут забить капиллярные трубки и четырехходовой клапан. Чаще всего в качестве инертного газа используют сухой азот.


    Рис. 4. Пайка медных труб в среде инертного газа: 1 — редуктор с регулятором расхода газа; 2 — уплотнение резиновым шлангом; 3 — место пайки

    При помощи резинового шланга соединяют фреоновую магистраль и баллон с азотом. Между трубопроводом и азотным баллоном устанавливают ротаметр или регулятор расхода газа (табл. 4).


    Таблица 4 Технические характеристики регуляторов расхода газа

    Редуктор азотного баллона устанавливают на минимально возможное давление азота (не более 0,2 бара). Ротаметром устанавливают скорость газа в трубе до 5 м/мин (расход 0,05 м3/ч). По окончании пайки необходимо пропускать азот по трубе до ее охлаждения (до температуры 35–45 °С).

    Если при пайке используется флюс, припой нагревают и наносят флюс на разогретый конец прутка припоя путем погружения его во флюс. Медно-фосфорным припоем пайка производится без флюса.

    При пайке близко расположенных соединений необходимо соблюдать определенную последовательность пайки, чтобы не расплавить предыдущий шов. На рис. 5 показана последовательность пайки тройника в зависимости от его положения в пространстве. При пайке элементов различной толщины прогрев начинают с более толстой детали. Стык трубопровода прогревают, вводят в зону пайки пруток припоя и производят пайку. После охлаждения паяного трубопровода до температуры окружающей среды закрывают подачу азота в трубопровод и протирают зону шва влажной ветошью. При необходимости прочищают металлической щеткой. Поверхность паяного шва должна быть гладкой, без наплывов припоя и усадочных раковин.


    Рис. 5. Последовательность пайки тройника

    Пайка электрическим резистивным нагревателем (рис. 2, в) осуществляется путем пропускания электрического тока через место спая. Место спая зажимается угольными электродами и при прохождении электрического тока на структуре уголь–медь–уголь падает большое напряжение, благодаря чему медь разогревается.

    Читать еще:  Флюс для пайки стали оловом

    Преимуществом этого метода является возможность плавного увеличения тока, а, следовательно, и температуры. Однако увеличивать ток нужно очень медленно, иначе можно прожечь трубу.

    Набор для пайки медных труб

    Процесс соединения сегментов начинается с подготовки набора специальных приспособлений и расходных материалов. Без такого комплекта невозможно выполнить качественную спайку деталей.

    Оборудование для пайки медных труб

    Припой и флюс

    Обработанные и очищенные поверхности медных элементов сначала всегда покрываются флюсом. Вещество представляет собой агрессивное соединение, полученное химическим путем. Флюс позволяет избавиться от оксидов и жира на изделиях. Производители изготавливают вещество в жидком и газообразном состоянии.

    Припой — это тоже расходный материал. Он выбирается в зависимости от варианта пайки. Многие производители изготавливают припой на основе олова. У расходного материала температура плавления ниже, чем у медных деталей.

    Для выполнения работ подходят припои, в которые добавлена сурьма, висмут или медь. Лучшим вариантом является расходный материал с серебром. Однако он больше стоит. Поэтому используется расходник, у которого один из компонентов — это медь.

    Горелка

    Пайка выполняется газовой горелкой небольших или стандартных размеров. Инструмент создает узконаправленное пламя. В качестве горючего вещества, размещаемого в баллоне, вовремя низкотемпературной работы применяется смесь, состоящая из воздуха и пропана. Может также использоваться пропано-бутановое газообразное вещество, соединенное с воздушной средой. Объема смеси в одном баллоне хватает для выполнения примерно 300-400 стыков.

    Во время высокотемпературной стыковке применяется горючая смесь, состоящая из пропана и кислорода или воздуха и ацетилена. Соединения также могут быть выполнены с помощью ацетилено-кислородного газообразного вещества.

    Паяльник

    Этот вид оборудования представляет собой электрическое приспособление. Инструмент позволяет соединить отдельные сегменты медных систем при использовании мягкого или твердого припоя. Электрический паяльник имеет прижимные клещи.

    В устройстве также присутствуют съемные электрод Приспособление применяется на объектах, где нельзя использовать открытый огонь.

    Сопутствующие материалы

    При монтаже медных инженерных коммуникаций не обойтись без трубореза. Инструмент позволяет нарезать трубы требуемой длины. Рекомендуется применять в работе исключительно высококачественные приспособления. Именно они позволят не замять металл и осуществить ровный срез.

    При монтаже водопровода, отопления, сетей газоснабжения и кондиционирования также применяется фаскосниматель. Инструмент позволяет удалять заусенцы с внутренней кромки среза. Это приспособление облегчает вставку одной детали в другой элемент.

    Однако действовать можно исключительно при использовании труборасширителя, если состыковываются сегменты одинакового диаметра.

    При подготовке медных элементов также выполняется зачистка их внутренних поверхностей. В процессе используется металлическая щетка или ершик.

    Инструменты и приспособления

    Конечно, для пайки медных труб своими руками в стандартном исполнении можно использовать многие элементы, которые несложно обнаружить в собственных домашних запасах. В крайнем случае придётся приобрести специальные приспособления для выполнения технологического процесса пайки. Итак, чтобы произвести качественный монтаж медных изделий может понадобиться:

    1. Ручной труборез, который позволит получить строго перпендикулярный разрез трубы.
    2. Приспособление для снятия фаски — служит для удаления различных заусенцев и закругления места разреза.
    3. Расширитель труб поможет во многих ситуациях обойтись без применения фитингов. Для пайки нужно увеличить диаметр одного конца трубы, чтобы туда вставить другую заготовку.
    4. Щётки и ёршики помогут очистить от окиси место пайки труб.
    5. Для повышения безопасности работ на сопло горелки нужно установить рефлектор (отражатель) огня, который поможет защитить горючие материалы, расположенные вблизи места работы. Это предотвратит потери тепла и обеспечит равномерный прогрев трубы.
    6. Газовая горелка является основным инструментом для пайки медных труб. Существует несколько разновидностей горелок- от высокопроизводительных моделей до бытовых устройств.

    По мощности горелки подразделяют:

    1. Для разогрева труб и пайки мягким припоем.
    2. Для проведения работы твёрдым или мягким припоем (полупрофессиональные).
    3. Для осуществления пайки твёрдым припоем (профессиональные).
    4. Термофеном можно разогреть легкоплавкий припой. Такой инструмент способен давать струю горячего воздуха до 650℃.

    Медь и её сплав (бронза и никель) ввиду электро- и теплопроводности, антикоррозийности используется во многих отраслях. Точка плавления материала 1083°C. Теплопроводность чистой меди в 2 раза больше по сравнению с алюминием, поэтому, при сварке аргоном необходим хороший разогрев металла.

    А вот теплопроводность медного сплава уже поменьше, значит отпадает необходимость повышенного нагрева.

    Медь и сплавы подразделяются на несколько марок. Для получения качественного сварного соединения, лучше применять раскисленную или бескислородную медь, в них мало кислорода.

    Основные присадочные составы для сварки меди аргоном представленны в таблице.

    Но на практике, обычно используются аналогичные металлы по составу (что найдется в домашней мастерской).

    Также, для лучшего расплава и сплавления металла, применяются прутки с тонким покрытием слоя флюса.

    Подготовка материала (очистка)

    Сварка меди аргоном не может выполняться без тщательной очистки материала. Берется любой абразивный инструмент и сварное место зачищается до блеска. Далее с помощью любого растворителя обезжиривается материал.

    Подойдите ответственно к очистке медных изделий — это влияет на качество соединения.

    Чтобы не было деффектов (несплавление, шлаковые включения), выполняйте предварительный нагрев материала до температуры 350-600°C. Разность температуры зависит от основного металла, присадочного и разделки кромок. Определяется опытным путем.

    Видео: как подготовить трещину у газового медного радиатора для сварных работ.

    Сварка аргоном (режим TIG)

    Эта технология по заверениям сварщиков самая лучшая, швы получаются аккуратными и прочными. Сварка меди аргоном выполняется вольфрамовым электродом на постоянном токе. А вот, при сплаве алюминиевой бронзы, соединение лучше производить на переменном токе.

    Настройки тока аппарата подбираются в зависимости от толщины изделия и диаметра электрода. Таблица в помощь:

    Кроме аргона, можно использовать азот, гелий и их смеси в составе защитных газов. Все перечисленные газы имеют свои плюсы и минусы. Но аргон, все же более востребован для сварочных работ.

    Присадочные прутки подбираются по составу материала. Но обычно, в домашней мастерской, применяются медные провода добытые из электрических кабелей или трансформатора. Предварительно, медная жилка очищается от лака наждачкой и обезжиривается растворителем.

    Хорошо, если добытая присадочная проволока будет с меньшей температурой плавления, чем приготовленное к сварке изделие.

    Некоторые советы бывалых сварщиков:

    • присадку всегда ведите перед горелкой;
    • сварка аргоном для толстой меди может выполняться без присадочной проволоки;
    • горелку рекомендуется вести зигзагами для обеспечения лучшего сцепления металла;
    • тонкий материал, чтобы не было прожогов, необходимо варить короткими швами с перерывами;
    • если аппарат без функции «заварка кратера», то горелку нужно отводить постепенно (удлиняя дугу);
    • сварка аргоном производится в вертикальном и горизонтальном положении шва.

    Видео: нагрев и соединение меди.

    Сварка медных труб

    При соединении медных труб аргоном, ток выставляется небольшой. Сварка ведется медленно, отдельными кусочками шва, с перекрытием не менее 1/3. Присадочная проволока расталкивается боковыми движениями горелки. Принцип простой:

    • капнуть — растянуть;
    • ещё раз добавить и растянуть.

    Если сварка медных труб будет выполняться сплошным швом, то можно получить прожог металла.

    Самый лучший вариант, иметь аппарат с функцией импульсной сварки. Ток можно выставить побольше, чтобы присадочный материал расплавлялся быстро. Время между импульсами настраивать так, чтобы медь после подачи импульса успевала остыть (защита от прожога). Также правильно настраивайте время функции — «заварка кратера».

    P.S. Сварка медных труб или плоских изделий для каждого материала требует подбора тока методом тыка. Желательно пробы проводить на схожих по составу материалах. Не надо портить деталь, которую надумали сваривать.

    Правильно выбранный ток, должен осуществлять хороший нагрев и проплавление медного изделия. Дыр и пор не должно быть. Удачи в освоение техники!

    Пошаговая технология пайки меди

    Пайка медных труб начинается с подготовки соединения. От качества подготовки зависит надежность соединения, потому уделяйте этому процессу достаточно времени и усилий.

    Пайка медных труб состоит из нескольких этапов

    Подготовка соединения

    Как уже говорили, срез трубы должен быть строго вертикальным, без заусенец, труба не должна быть замятой, край — ровный и гладкий. Если есть хоть небольшие отклонения, берем фаскосниматель или наждачную бумагу и доводим срез до идеала.

    Надо снять окислившийся слой

    Далее берем фитинг, вставляем в него трубу. та часть, которая заходит в раструб требует очистки. Трубу вынимаем и шкуркой снимаем верхний окисленный слой с этой части трубы. Потом ту же операцию проводим с внутренней поверхностью раструба.

    Читать еще:  Припой для пайки феном

    Нанесение флюса

    Флюс наносится на всю зачищенную поверхность — снаружи трубы и внутри фитинга. Тут никаких сложностей — кисточкой равномерно распределяют состав.

    Нанесение флюса

    Пайка

    Обработанные фрагменты трубопровода вставлюятся один в другой и фиксируются. Если есть помощник — он может придержать части неподвижно. Если нет — придется ухищряться самостоятельно. Далее разжигается горелка, пламя направляется на место соединения. Температура пламени — от тысячи градусов и выше, а нагреть место соединения надо до 250-300 °C, а это занимает 15-25 секунд. Можно при этом ориентироваться на цвет флюса — как только он потемнел, пора вводить припой.

    Правильное расположение горелки при пайке медных труб своими руками

    Чтобы прогрев был равномерный, пламя горелки направляйте посередине стыка. Тогда прогревается вся зона сварки более равномерно.

    Пайка медных труб мягким припоем

    Припой вводят в место стыка — где соединяется фитинг и труба. По мере нагрева, он начинает плавиться, растекается и заполняет зазор между элементами. Нанести его можно только на половину длины — расплавившись, он затечет в остальное соединение. Собственно, это все — пайка медных труб закончена. Все остальные соединения делают также.

    При использовании жесткого припоя все почти также, только применяются другие горели — газопламенные, и в процессе пайки надо трубу проворачивать, наматывая размягчившийся припой на трубу.

    Автор статьи:

    Пайка под азотом технология

    Михаил Нижник, генеральный директор, ООО «Группа МЕТТАТРОН»
    Александр Черный, технолог, ООО «Группа МЕТТАТРОН»

    В первой и второй частях мы рассмотрели состав паяльных паст, влияние составляющих на конечный результат, а также факторы, определяющие качество печати. В продолжении цикла обратимся к термическим характеристикам паст и особенностям THT-монтажа.

    ТЕРМОПРОФИЛЬ

    Рассмотрим состояние и поведение паяльной пасты во время процесса оплавления (рис. 32).

    Рис. 32. Обзор зон термопрофиля

    Начальный набор температуры

    При повышении температуры растворители начинают испаряться. Характер испарения определяется индивидуальными температурами испарения используемых во флюсе растворителей. Смолы и тиксотропные материалы начинают размягчаться. Характер размягчения зависит от температур размягчения отдельных компонентов, лежащих в диапазоне 100–140°С.

    Быстрый набор температуры может привести к разбрызгиванию пасты в результате закипания флюса и образованию перемычек. Плавный набор температуры позволит избежать подобных дефектов.

    Стадия предварительного нагрева

    На этой стадии растворители должны полностью улетучиться из пасты. Происходит активация флюса и равномерное распределение тепла в подложке.

    Флюс становится очень мягким, переходит в жидкое состояние, равномерно обволакивает частицы припоя, растекается по подложке и защищает частицы припоя от повторного окисления.

    Одновременно с повышением температуры и плавлением компонентов флюса «включаются» канифоли и активаторы, которые удаляют пленку окиси с частиц порошка припоя и с подложки.

    Высокая температура в зоне предварительного нагрева может привести к плохому смачиванию подложки и окислению припоя вследствие быстрого испарения активаторов флюса. В случае плохого смачивания следует снизить температуру.

    Если температура выводов компонентов растет быстрее, чем прогревается вся площадка, то слишком короткая зона предварительного нагрева приведет к тому, что при расплавлении припоя он переместится на выводы. В месте пайки выводов соберется излишнее количество припоя, который контактирует с соседними выводами. Поэтому если перемычки припоя возникают на этой стадии процесса, то необходимо провести регулировку зоны предварительного нагрева.

    Рис. 33. «Седлообразный» профиль нагрева

    Второй набор температуры

    Когда частицы припоя достигают температуры плавления (точки ликвидуса), припой расплавляется, реагирует с флюсом, очищается от окисей, и происходит пайка.

    Для большинства паяльных паст рекомендуемое время нахождения припоя в расплавленном состоянии составляет 30–40 с, чтобы обеспечить полное плавление припоя и достаточное время на смачивание спаиваемых поверхностей в случае, если в изделии установлены весьма теплоемкие компоненты.

    Медленный набор температуры между зоной предварительного нагрева и точкой ликвидуса может привести к окислению шариков припоя, что приведет к плохому смачиванию выводов компонентов и подложки. В случае плохого смачивания, следует использовать более быстрый набор температуры между зоной предварительного нагрева и точкой ликвидуса.

    Низкая температура и недостаточное время нахождения в зоне оплавления может стать причиной образования пустот. В случае образования большого количества пустот, следует увеличить время нахождения или (и) увеличить температуру в зоне оплавления (> 45 с).

    ТИПЫ ТЕРМОПРОФИЛЯ

    В конвекционных печах оплавления используются два профиля нагрева: линейный и седлообразный (см. рис. 33). Хотя рекомендуется работать по показанному на рисунке 32 седлообразному профилю, давайте посмотрим, что стоит за каждым из этих подходов.

    Когда пайка оплавлением только начала внедряться в технологию поверхностного монтажа, количество компонентов на поверхности изделия было не очень большим, и разница в теплоемкости отдельных элементов была незначительной. Простая конфигурация платы позволяла без особых проблем работать с плавным набором температуры, без зоны предварительного прогрева.

    Миниатюризация привела к повышению плотности монтажа и к появлению весьма теплоемких элементов типа корпусов BGA и QFP.

    Большой разброс теплоемкости отдельных компонентов не давал добиться теплового равновесия при нагреве по линейному закону (и даже по седлообразному), да еще в обычных инфракрасных печах с проблемами затенения и разницы теплопоглощения из-за цвета изделий.

    Тогда появился процесс пайки оплавлением в паровой фазе, который позволял добиться весьма хорошей равномерности прогрева. Однако от него вскоре пришлось отказаться из-за развития трещин, отрыва компонентов от подложки при резком нагреве, токсичности растворителей и запрета на использование фторуглеродных растворителей CFC.

    Затем появился популярный сейчас процесс пайки в конвекционных печах, который обеспечивает гораздо более равномерный прогрев, чем инфракрасные печи.

    Что касается причины, по которой в нем используется седлообразная кривая нагрева, то она заключается в стремлении добиться с помощью принудительной циркуляции такого же теплового равновесия, которое было характерно для процесса пайки в паровой фазе.

    Рис. 34. Прогрев компонентов разной
    величины при линейном и
    седлообразном температурном профиле

    При разработке кривой нагрева более важно учитывать характер и конструкцию электронных компонентов и подложки, нежели поведение паяльной пасты в ходе нагрева. Пример: измерим температуру пайки бескорпусного конденсатора и микросхемы в корпусе BGA (см. рис. 34). Разница в теплоемкости влияет на скорость прогрева и температуру.

    При седлообразном термопрофиле пайки компоненты с большей теплоемкостью догоняют по температуре остальные компоненты до начала следующего участка набора температуры. Это уменьшает разницу температур компонентов в точке пайки.

    На рисунке 35 показана разница в поведении вязкости паст при линейном и седлообразном термопрофиле. Более резкий набор температур в седлообразном профиле обуславливает необходимость использования большего количества типов растворителей с разной температурой кипения.

    Рис. 35. Изменение вязкости пасты
    при линейном и седлообразном профиле нагрева

    Работать можно и с линейным, и с седлообразным профилем, лишь бы передавалось количество тепла, необходимое для испарения растворителей. При настройке термопрофиля нужно тщательно учесть все аспекты, влияющие на равномерный нагрев всех поверхностей (как компонентов, так и печатной платы), чтобы обеспечить качественную пайку каждого компонента.

    Исходя из опыта технологов, работающих на производстве, можно сказать, что неверно выбранный размер и форма апертур гораздо сильнее влияют на качество пайки и появление дефектов (перемычек и бусинок припоя), чем не совсем корректно подобранный термопрофиль.

    Оценка надежности готовых изделий

    При использовании безотмывочных паст после пайки на поверхности печатной платы остается некоторое количество остатков флюса. Требуемый уровень надежности определяется заказчиком в зависимости от характера изделий. В соответствии с международным стандартом IPC, электронные изделия делятся на три класса:

    Class 1 — изделия общего назначения. Для них допустимо некоторое количество дефектов, и критерии надежности к ним предъявляются минимальные. Пример: компьютерная мышь.

    Class 2 — изделия, нарушение функционала которых чревато последствиями. Это бытовая техника, электроника в автомобилях. Например, телевизор при выгорании печатной платы может вызвать пожар.

    Class 3 — изделия, от бесперебойной работы которых зависит здоровье и жизнь людей. Это системы жизнеобеспечения, авиастроение. Зачастую в третьем классе изделий выделяются подклассы, которые можно условно назвать «Military» и «Space». Class 3C — газоанализатор в угольной шахте; Class 3B — военная техника; Class 3A — система жизнеобеспечения на МКС.

    Читать еще:  Станок для пайки полиэтиленовых труб

    Как говорилось в первой статье цикла, паяемость и надежность зачастую антагонистичны, поскольку все активаторы (органические кислоты, галогены) коррозионно агрессивны и могут снизить надежность в зависимости от их содержания в остатках флюса.

    Рис. 36. Механизм возникновения ионной миграции

    Рис. 37. Пример диаграммы SIR

    При проверке надежности продукта проверяют следующие показатели:

    — Проверка деградации электроизоляционных свойств пасты (см. рис. 36, 37 и 38). Это испытание характеризует флюс по степени снижения сопротивления изоляции жесткого гребеночного электрода в условиях высокой влажности и температуры. Флюс испытывают на поверхностное сопротивление по методике IPCTM-650 при 85°С и относительной влажности 85%. Если остатки флюса, в которые входят смолы, активаторы и тиксотропные материалы, гигроскопичны и хотя бы частично диссоциируют на ионы, то сопротивление изоляции падает.

    Рис. 38. Дендриты

    Компания «KOKI», кроме классических методов, применяет собственные, более жесткие испытания.

    — Коррозия. Для испытания флюса на коррозионную агрессивность (см. рис. 39) применяют два метода: тест на коррозию медной пластины и медного зеркала. В зависимости от применяемых стандартов (IPC, JIS и т. д.), методики будут отличаться. Детали методик смотрите в соответствующих стандартах.

    — Ионные загрязнения. Это испытание оговаривается в стандарте MIL. При погружении оплавленной платы в водный раствор изопропилового спирта на ионографе по сопротивлению определяют количество ионных остатков. Полученную величину сопротивления пересчитывают в NaCl (г/см 2 ). Уровень ионных остатков, допустимый по МIL для паст с флюсом RMA, не должен превышать 3,1 г/см 2 . Однако, поскольку этот тест определяет ионное загрязнение, вызванное не только флюсом, но и подложкой и компонентами, то получаемые результаты используют только для справки.

    Рис. 39. Тест на коррозионную стойкость

    Остатки флюса

    Флюс паяльной пасты состоит из растворителей и твердых веществ: смол, активаторов, тиксотропных материалов. Содержание твердых веществ во флюсах паяльных паст «KOKI» составляет до 60–70%, причем большая часть этих веществ после пайки остается на поверхности изделия в виде остатка.

    Поскольку столь большое количество твердых веществ поддерживает заданные реологические и другие свойства пасты, то понятно, что, не прибегая к пайке в среде азота, снизить их содержание технически трудно.

    При разработке новых флюсов производители стремятся к тому, чтобы смолы во флюсе были по возможности бесцветными — это улучшает косметический вид платы после пайки.

    Контролепригодность изделий

    По мере миниатюризации электронных компонентов и роста плотности монтажа становится все труднее разместить на плате необходимые контрольные точки для проверки цепей. Поскольку при отсутствии таких площадок щупы тестера контактируют непосредственно с галтелью припоя, состояние и расположение остатков флюса на месте пайки становится важным фактором тестируемости схемы.

    Типичные факторы, затрудняющие контакт щупа с металлом, и меры преодоления проблем приводятся в таблице 5.

    Таблица 5. Факторы, затрудняющие тестирование изделия, и методы их преодоления

    ФакторыМеры преодоления
    Объемный остаток флюсаПоскольку толстый осадок снижает проводимость и ухудшает контакт щупа, следует, насколько это возможно, снизить содержание твердых веществ
    Растекаемость флюсаКак и в приведенном выше случае, для лучшего контакта желательно иметь по возможности более тонкий слой остатков флюса. Флюс следует составлять так, чтобы во время пайки он обтекал кромку припоя и оставлял на нем как можно более тонкий слой осадка
    Твердость остаткаПри ударе пробника по остатку флюса он растрескивается, и его кусочки прилипают к носику щупа, что ухудшает электропроводность. Поэтому нужно подбирать компоненты флюса так, чтобы его остатки сохраняли определенную пластичность
    Конструкция тестера (тип щупа, контактное давление, местоположение контакта и т.д.)Использование одноштырьковых пробников, увеличение давления при контакте и т.д.

    Однако реализовать хорошую тестируемость по приведенным рекомендациям на практике проблематично, и вот почему:

    — Уменьшение количества твердых составляющих флюса отрицательно скажется на других характеристиках пасты, таких как печатаемость, срок жизни, клейкость, паяемость.

    — Растекание флюса можно регулировать использованием смол, канифолей и тиксотропных материалов с низкой температурой плавления. Например, температура плавления канифоли марки WW («прозрачная, как вода») составляет всего 80°С, но ее применение в композиции флюса вызывает серьезные проблемы с осадкой пасты.

    — Твердость остатков флюса. Подобно растекаемости, твердость остатков флюса теоретически можно регулировать с помощью легкоплавких смол. На деле же для стойкости к осадке приходится вводить смолы с более высокой температурой размягчения, например смолы, полимеризованные абиетиновой кислотой. Такие смолы размягчаются при температуре порядка 140°С, и из-за них растрескиваются остатки флюса. После тщательных проработок специалисты компании «KOKI» пришли к выводу, что для предотвращения растрескивания остатков флюса они должны сохранять некоторую пластичность, чтобы щуп тестера легко проходил через слой остатков флюса даже при комнатной температуре.

    Рис. 40. Окисление в воздушной среде и в среде азота

    ОСОБЕННОСТИ ПАЙКИ ОПЛАВЛЕНИЕМ В СРЕДЕ АЗОТА

    Паяльные пасты с размером зерна менее 10 мкм сильно окисляются при нагреве в атмосферном воздухе, потому что отношение площади поверхности частицы припоя к ее объему обратно пропорционально радиусу частицы, а толщина окисной пленки не зависит от размера частицы. Чем мельче размер зерна, тем большее количество металла окислится.

    Для предотвращения повторного окисления паяльной пасты в процессе оплавления применяется пайка в среде азота. В конвекционную печь оплавления подается не атмосферный воздух, а практически чистый азот с содержанием кислорода Паяльные пасты: Все о главном. Часть 1

    Области применения газа

    Сегодня данный продукт востребован во многих отраслях промышленности: газовой, пищевой, металлургической. Однако крупные масштабы добычи азота актуальны именно для нефтехимической индустрии. Основная область применения – изготовление одноименной кислоты и других удобрений для сельского хозяйства. В технике азот используют для охлаждения различного оборудования и агрегатов. Он создает инертную среду при перекачивании горючих жидкостей.

    В фармацевтике азот применяют для транспортировки химического сырья, защиты резервуаров и упаковки лекарственных средств. В электронике он предотвращает окисление в процессе производства полупроводников.

    В пищевой промышленности азот в жидком состоянии используется как охлаждающий и замораживающий элемент. В газообразном виде его применяют в целях создания инертной среды при розливе негазированных напитков и масел, а также производят пропеллент для баллончиков.

    Наиболее эффективный способ тушения пожаров – азотное пожаротушение. Испаряясь, вещество быстро вытесняет кислород, который требуется для поддержания горения, и огонь затухает. Затем азот быстро выветривается из помещения, при этом сберегаются материальные ценности, которые могли быть повреждены пеной, порошком или водой.

    В медицине при помощи криогенной консервации сохраняют клетки и органы. Кроме того, жидким азотом разрушают пораженные участки тканей.

    Как запаять пластик?

    На современных автомобилях для снижения общего веса и удешевления производства многие детали делают из пластика. Не избежали этой судьбы и радиаторы. Прежде всего необходимо точно определить сорт пластмассы. Это делают по маркировке на детали. Как правило, для изготовления применяется полиамид (маркировка PA) либо полипропилен (маркировка PP). Именно с такой маркировкой и нужно приобрести сварочные прутки для пластика. Их можно заменить полосками, вырезанными из ненужной пластмассовой детали с аналогичной маркировкой.

    Потребуются следующие материалы и оборудование:

    • промышленный фен для нагрева заготовки;
    • электропаяльник с регулируемой температурой жала;
    • припой, подобранный в соответствии с материалом радиатора;
    • ацетон;
    • ветошь.

    Действовать надо в следующем порядке:

    • обезжирить место повреждения ветошью, смоченной в ацетоне;
    • прогреть зону ремонта феном;
    • установить температуру паяльника в 250 о С;
    • повести по лини шва жалом паяльника несколько раз так, чтобы образовалась выемка по форме сварочного прутка;
    • вложить пруток в выемку, и, приглаживая его паяльником, разровнять вровень с корпусом радиатора.

    Во время пайки нужно следить за тем, чтобы пластик размягчался, но не плавился и не горел. После ремонта и перед монтажом обратно на автомобиль следует проверить герметичность отремонтированного места в емкости с водой.

    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector