24artstroy.ru

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Восстановление деталей сваркой и наплавкой

Оба метода основаны на тепловом воздействии, отличаются только настройки используемого оборудования. Наплавка ― это нанесение на поверхность деталей слоя из сплава основного и присадочного металла. Наплавкой восстанавливают не только геометрические размеры, но также наносят покрытия для повышения жаростойкости, прочности, износоустойчивости и т. д. Процедура выполнятся на поверхности любой формы― от плоской до конической и сферической.

Сварка ― это процесс создания соединения металлических элементов методом плавления или давления. Этим способом заделывают трещины, сколы, отверстия от пробоин, крепят отломившиеся элементы. С такими повреждениями рам, поддонов, кузовов, обоих мостов постоянно сталкиваются при ремонте автомобилей. Сварку также применяют совместно с другими восстановительными процедурами.

Для качественного восстановления деталей сваркой и наплавкой необходимо:

  • не допускать сильного смешивания основного металла с наносимым;
  • плавить основной металл на минимальную глубину;
  • не делать больших припусков на последующую обработку;
  • принимать меры по снижению остаточных напряжений и деформации.

Общая информация

Итак, наплавка металла— это метод восстановления или укрепления сварного шва. В ходе работ на поверхности соединения формируется новый слой. Слоев может быть несколько, если это необходимо. Такая технология не похожа на формирование шва, важно не путать наплавку и сварку.

Для выполнения наплавки применяются электроды из особых групп, всего их 6. Каждая группа предназначена для определенных металлов, наделяет наплавочный слой индивидуальными свойствами и характеристиками. О группах мы поговорим позже. Изготовление наплавочных электродов регулируется ГОСТами №9466-75 и №10051-75.

Профессиональные сварщики могут применять для наплавки обычные электроды, не предназначенные для этих целей. Зачастую они используют марки, заточенные под сварку жаростойких и антикоррозийных сталей. Мы не рекомендуем новичкам и даже практикующим мастерам использовать обычные электроды в целях наплавки. Результат, скорее всего, разочарует вас. Здесь важен многолетний опыт и постоянная практика.

Наплавочные электроды

Как и электроды для сварки углеродистых сталей, ГОСТ на которые определяет марку материала и технологию сварки, наплавочные электроды также различают по своим функциональным особенностям.

Важно! Различают электроды, с помощью которых можно производить как собственно сварку, так и наплавку (ГОСТ 9466-75), электроды, выполняющие ручную электродуговую наплавку (ГОСТ 10051-75), а также нестандартизированные электроды специального применения (например, для наплавки изношенных гравюр штампов, матриц или пуансонов).

Типы электродов, определяемые действующими госстандартами:

  1. Покрытые наплавочные электроды, предназначенные для наплавки низколегированных сталей: Т-590, Т-620, ОЗН-6, АНП-13
  2. Сварочные наплавочные электроды, используемые при обработке нержавеющих сталей: ЦН-6Л, ЦН-12М, УОНИ 13/НЖ-20Х13
  3. Твердосплавные наплавочные электроды, эффективные при упрочнении металлообрабатывающего инструмента: ОЗН-300М, ОЗН-400М

Что выбрать?

Сварочную проволоку и электроды для ручной дуговой сварки объединяет само их предназначение — получение наплавленного металлического шва с определенным составом и свойствами, позволяющими эксплуатировать конструкцию в конкретных условиях.

Но одна и та же задача в этих материалах решена по-разному: в электродах легирующие элементы находятся не только в металле (электрода), но и в обмазке, и элементы переходят в шов в процессе сварки. При работе с полуавтоматом легирующие элементы находятся только в металле самой проволоки. Электродам не требуется какая-то дополнительная защита во время сварки, в отличие от нужно прокаливать перед использованием, так как обмазка впитывает влагу из воздуха, и потом переносит водород в сварной шов, что крайне нежелательно поскольку могут возникнуть дефекты.

Для сварки низкоуглеродистой и низколегированной стали используется проволока св-08Г2С либо её аналоги. Ее диаметр и режимы работы нужно выбирать в зависимости от толщины свариваемого металла, чаще всего используется диаметр 1,2 мм. В случае с электродами — это будут скорее всего АНО-4, АНО-12, ОЗС-12, УОНИ 13/55 или их аналог. Диаметр электродов также выбирается в зависимости от толщины металла.

Читать еще:  Электроды для ТИГ сварки алюминия

Правильная технология: как сваривать тонкий металл электросваркой

Ширина заготовки не влияет на три основных этапа:

  • подготовка;
  • сваривание;
  • шлифовка, зачистка швов.

Подробнее о первых двух.

Подготовительные работы

Необходимо убрать все загрязнения, особенно следует уделить внимание месту, к которому крепится масса сварочного аппарата. Ржавчину можно снять наждачкой. Если изделия оцинкованное, то можно зачистить поверхность с помощью болгарки, или варить прямо по цинку – вещество расплавится в момент нагрева.

Сваривание

  • Чтобы дуга быстрее зажглась, перед началом зачистите электрод от обмазки на крайние 5 мм.
  • Зажигать электродугу можно двумя классическими способами – чирканьем или постукиванием.
  • Сварная ванна должна иметь форму овала.
  • Держите дистанцию, чтобы проводник не налипал.
  • Если на аппарате есть специальный режим антиприлипания, воспользуйтесь им. Он работает так: при приближении насадки к заготовке автоматически снижается напряжение оборудования. Если же дуга слишком сильно растянута, происходит обратный процесс и ток прибавляется. В результате получается стабильный шов даже при неравномерном проведении.
  • Идеальный градус угла – 60 градусов. Его нужно сделать перед тем, как сварить тонкий металл электродом. Если делать показатель меньше, то сварное соединение получится выпуклым.
  • Оптимальное движение – зигзаг. При этом не имеет значения направление от себя или к себе.
  • Скорость перемещения рукояти должна быть достаточно высокой, но при этом отличаться постоянством.

Посмотрим видео самого процесса:

3 Особенности наплавки в газовой защитной атмосфере

Восстановление валов и других изделий по технологии TIG (применяются присадочные прутки и сварочные стержни из вольфрама) и MIG/MAG (проволока подается автоматизировано) также широко применяется в настоящее время. Указанные методы предполагают использование азота, углекислоты, аргона или гелия в качестве защитного газа.

Азот обычно применяется при восстановлении медных деталей, а вот для валов и изделий из углеродистых сплавов чаще используют углекислый газ (при этом нужна раскисляющая проволока с включением кремния и марганца). Вольфрамовые неплавящиеся стержни применяют для восстановления в гелиевой либо аргоновой среде. Композиции на базе алюминия и магния, а также высоколегированные стали наплавляют в смеси гелия и аргона (изредка эти газы используются и отдельно).

Наплавочную операцию по технологии TIG следует выполнять так, чтобы металл разбрызгивался незначительно. Выполняется это условие тогда, когда процесс ведется короткой дугой на прямой полярности, которая не позволяет электроду из вольфрама оплавляться. А вот MIG/MAG-технология осуществляется на токе обратной полярности.

При восстановлении деталей из нержавеющей стали необходимо использовать проволоку из нержавейки. Полуавтоматическая наплавка низколегированных и углеродистых сплавов всегда производится двумя видами проволоки:

  • типа Нп (50, 40, 30ХГСА);
  • типа Св (08Г2С, 08ГС и др.).

Первые проволоки относят к специальным, вторые характеризуются сплошным сечением.

Общая схема процесса электроискрового легирования

На рис. 1 приведена общая схема процесса ЭИЛ с вибрирующим анодом в виде компактного электрода и изображение образующегося верхнего слоя.

Рис. 1. Схема электроискрового легирования (ЭИЛ): Г.И. – генератор импульсного тока; МЭП – межэлектродный промежуток; ИР – искровой разряд; А – анод; К – катод

Процесс ЭИЛ начинается со сближения анода (электрода) с катодом (деталью). При расстоянии между ними, равном пробивному, начинается развитие искрового разряда длительностью 10–6…10–3с, который во многих случаях завершается при контакте электродов.

При небольших напряжениях между электродами (U Читайте также: Бензиновый генератор: принцип работы, классификация, как выбрать

Читать еще:  Липнет электрод при сварке инвертором

Недостатками наплавки металлической лентой являются сравнительно низкая прочность сцепления покрытия с основой, тонкий слой наплавленного металла. Увеличить толщину наплавки в данном случае не представляется возможным. Более толстое покрытие позволяет получить ЭКН сварочной проволокой.

Наплавка сварочной проволокой

Электроконтактную наплавку осуществляют на специальной установке (рис. 2.) совместным деформированием наплавляемого металла и поверхностного слоя металла основы, нагретых в очаге деформации до пластического состояния короткими (0,02–0,04 с) импульсами тока 10–20 кА. В результате каждого из последовательных электромеханических циклов процесса на поверхности металла основы образуется единичная площадка наплавленного металла, перекрывающая соседние. Деформация наплавляемого металла за цикл составляет 40 – 60%. Наличие пластической деформации присадочного материала дает возможность повысить прочность сцепления покрытия с основой [7].

Электроконтактную наплавку применяют для ремонта металлических поверхностей и получения биметаллических изделий.

Рис. 2. Схема установки электроконтактной наплавки:

а – начальное состояние; б – конечное состояние; 1 – прерыватель тока; 2 – трансформатор; 3 – наплавляющий ролик, 4 – амортизатор; 5 – присадочная проволока; 5 – образец

Технологические варианты наплавки

Основная технологическая схема.

Сплошной слой металла образуется по этой схеме путем наплавки спиралевидных перекрывающихся по ширине валиков металла (рис. 3.).

Наплавка производится одним наплавляющим роликом. Присадочная проволока додается в зону наплавки и фиксируется с помощью направляющей втулки, жестко закрепленной относительно ролика. Положение каждого витка спиралевидного валика, обеспечивающее перекрытие его с соседним, определяется только скоростью перемещения ролика относительно образующей вращающейся детали.

Рис. 3. Основная технологическая схема электроконтактной наплавки 1 – наплавляемая деталь, 2 – наплавленный металл; 3 – присадочная проволока, 4 – наплавляющий ролик; 5 – трансформатор, 6 – прерыватель тока

При наплавке очередного витка присадочная проволока вследствие деформации контактирует с ранее наплавленным валиком. Присадочная проволока и участок металла предыдущего витка нагреваются током наплавки и совместно деформируются, в результате чего происходит их соединение. Даже при дополнительной цепи тока наплавки, средняя плотность тока на единицу площади контакта присадочная проволока – деталь не снижается, а прочность соединения с металлом второго (и любого последующего) витка не меньше прочности соединения первого витка. Это объясняется тем, что суммарная длина контакта любого поперечного сечения единичной площадки второго витка с учетом контакта с предыдущим валиком не превосходит длины контакта того же сечения первого валика с поверхностью детали.

Основная технологическая схема наплавки проста, надежна и может считаться оптимальной для большой группы изделий.

При наплавке по рассматриваемой технологической схеме размеры внешнего контура изменяются соответственно перемещению наплавляющего ролика, поэтому значения тока в начале и в конце наплавляемого участка различны. В связи с этим изменяются в некоторых пределах прочность на отрыв, усталостная прочность, твердость наплавленного металла.

Недостатком схемы является повышенный местный износ ролика, при его зачистке после наплавки очередного участка удаляется часть поверхности ролика, не участвовавшая в работе, поэтому предпочтительнее последовательное использование всей контактной поверхности ролика.

Основная технологическая схема электроконтактной наплавки проста и надежна, недостатки ее не являются определяющими.

Двухзаходная технологическая схема

. Сплошной слой металла образуется по этой схеме последовательной наплавкой двух спиралевидных валиков с увеличенным шагом (рис. 4.); на поверхности основного металла наплавляют спиралевидный валик с зазором между соседними витками. Второй спиралевидный валик наплавляют в зазор между витками первого спиралевидного валика.

Рис. 4. Двухзаходная схема наплавки:

а – наплавка валика первого захода, б – наплавка валика второго захода

Читать еще:  Как варить электродами по алюминию?

Валик в зазоре между наплавленными витками наплавляют при силе тока несколько большей, чем сила тока наплавки первого валика, вследствие необходимости нагрева поверхностного слоя металла уже наплавленных соседних витков для соединения их с наплавленным валиком.

Двухзаходная схема наплавки не требует изменений установки, так же проста и надежна, как и основная технологическая схема.

Основное ее достоинство – возможность уменьшить тепловыделение наплавкой спиралевидного валика с увеличенным шагом. Кроме того, перед наплавкой второго валика деталь может быть охлаждена в требуемом режиме.•

Меньшее термическое влияние на основной металл при наплавке по двухзаходной технологической схеме сопровождается уменьшением производительности [7].

Двухточечная технологическая схема.

/Клименко Ю. В. Авт. свид. № 407678. – «Открытия, изобретения, пром. образцы, товарные знаки», 1973, № 47, с. 37./

Принципиальные отличия ее – схема включения детали в цепь тока наплавки и последовательность наплавки единичных площадок.

Ток в зону наплавки подводится через два наплавляющих ролика, что позволяет исключить из внешнего контура контактный переход «патрон – металл основы» и уменьшить потери мощности. Особенность этой схемы также и в том, что первым наплавочным роликом наплавляется спиралевидный валик, в котором соседние единичные площадки не перекрываются, а вторым роликом проплавляются образовавшиеся пропуски (рис. 5.). Таким образом, одним импульсом тока наплавляются две диаметрально противоположные площадки металла.

Сущность наплавки

Наплавка электродом осуществляется следующим образом. Под действием пламени сварочной дуги расплавляется внутренний стержень электрода, после чего с его помощью накладываются поверхностные валики в необходимом количестве.

Качественные характеристики зависят от глубины проплавления поверхности. Чем меньше будет глубина, тем более качественной окажется проплавка. Это объясняется тем, что при этом перемешивание основного металла с наплавленным сведется к минимуму. Для избежания деформации деталей желательно, чтобы остаточные напряжения в металле были бы незначительными. Это возможно при тщательном соблюдении технологии процесса.

Электроды для наплавки имеют основное покрытие. Такая обмазка обеспечивает стойкость к образованию трещин, особенно в том случае, когда производится работа с изделиями из сталей, имеющих повышенное содержание углерода.

Электроды для наплавки валов обеспечивают жесткость соединения ответственных конструкций. Для работы с высоколегированными, жаростойкими и жаропрочными сталями применяются электроды для наплавки, стойкие к абразивному износу.

Электроды для наплавки стали применяются для осуществления наплавки рельсов, таких изделий в автомобильной и железнодорожной промышленности, как валы и крестовины.

Применение комбинированной обработки уместно в тех случаях, когда требуется получить сплошной гомогенный слой. Для этого наплав производят узкими рубцами, располагающимися друг от друга на расстоянии чуть меньше, чем их ширина. После нанесения первого слоя проводят зачистку основы, избавляясь от шлаков, а на оставшиеся пустоты наносят еще один слой расплавленного металла.

Кроме перечисленных выше, используют еще одну популярную технологию наплавки при использовании электродов – в защищенной газовой среде. Принцип обработки не отличается сложностью. На самом деле она в другом – приобретении баллона, заправленного специальной газовой смесью: аргоновой, гелиевой, любой другой в зависимости от типа присадочного материала, использующегося при наплавке. Такой вариант лучше всего подходит для небольшой домашней мастерской.

Хотя покупка газового баллона для работы с металлами в домашних условиях вряд ли окажется целесообразной. Своими руками проще выполнить наплавку при помощи электродов так, как мы рассмотрели в статье.

Хочется надеяться, что здесь вы нашли все ответы на интересующие вопросы, разобрались с понятием технологического процесса и уточнили для себя, как правильно проводить наплавку в домашних условиях.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector